
Paumi, C.M., Menendez, J., Arnoldo, A., Engels, E., Iyer, K.R., Thaminy, S., Georgiev, O., Barral, Y., Michaelis, S., and Stagljar, I. (2007) Mapping Protein-Protein Interactions for the Yeast ABC Transporter Ycf1p by Integrated Split-Ubiquitin Membrane Yeast Two-Hybrid Analysis. Molecular Cell 26:15-25.One of the lead authors is my friend Igor Stagljar (that's him in the picture). The study is a collaboration between him and Susan Michaelis' group at Johns Hopkins in Baltimore MD (USA). It's a pretty decent press release without too much hype. I just wish there was more emphasis on basic biochemistry and less on possible applications in medicine. The paper describes a new technique called "Integrated Split-Ubiquitin Yeast Two-Hybrid Analysis" or iMYTH—a variant of MYTH technology. The paper has nothing to do with medicine.

This is a proof of principle paper using a yeast ABC transporter that's being characterized by the Michaelis lab. Paumi et al. were able to identify six proteins that interact with the transporter, including Tus1P, a well-characterized guanine nucleotide exchange factor (GEF).
The exciting thing about this technique is that Igor has just introduced it into our Advanced Biochemistry Lab for undergraduates [BCH471Y]. The students are completing the final discussion day today. They identified a number of different proteins from a human brain library that interact with a human membrane receptor. One of them was a protein that had escaped detection when the experiments were first done in the Stadljar lab.
No comments:
Post a Comment