Tuesday, February 17, 2009

Monday's Molecule #108: Winner

 
UPDATE: This week's molecule is the genome of ΦX174, a small bacterial virus. It was the first complete genome to be sequenced (Smith et al., 1977, Sanger et al., 1978, Sanger et al., 1978). The sequencing was done in Fred Sanger's lab and Sanger was awarded the Noble Prize a few year later for developing the dideoxy sequencing technology [The Sanger Method of DNA Sequencing].

ΦX174 is interesting because it has overlapping genes—a feature that we now know to be uncommon.

One of the authors on the papers was Michael Smith. He spent a year in Sanger's lab on sabbatical. In 1978 Smith used the ΦX174 sequence in his experiments to develop site-directed mutagenesis (Hutchison et al. 1978). Smith got the Nobel Prize in 1993. He is this week's Nobel Laureate.

This week's winner is James Fraser of the University of California, Berkeley. We will be meeting for lunch in a few months.


Hutchison, C.A. 3rd, Phillips, S., Edgell, M.H., Gillam, S., Jahnke, P., and Smith, M. (1978) Mutagenesis at a specific position in a DNA sequence. J. Biol. Chem. 253:6551-6560.

Sanger, F., Air, G.M., Barrell, B.G., Brown, N.L., Coulson, A.R., Fiddes, C.A., Hutchison, C.A., Slocombe, P.M., and Smith, M. (1977) The nucleotide sequence of bacteriophage phiX174. Nature 265:687-695.

Sanger, F., Coulson, A.R., Friedmann, T., Air, G.M., Barrell, B.G., Brown, N.L., Fiddes, J.C., Hutchison, C.A. 3rd, Slocombe, P.M., and Smith, M. (1978) The nucleotide sequence of bacteriophage phiX174. J. Mol. Biol. 125:225-246.

Smith, M., Brown, N.L., Air, G.M., Barrell, B.G., Coulson, A.R., Hutchison, C.A. 3rd, and Sanger, F. (1977) DNA sequence at the C termini of the overlapping genes A and B in bacteriophage phi X174. Nature 265:702-705.





Today's Monday's Molecule really is a molecule. Your task is to identify the molecule from the cartoon shown here. It won't be sufficient to just find the name of the molecule, you will also have to identify the significance behind determining its chemical structure.

There's one scientist who was involved in that determination who also did some important work based, in part, on knowing the sequence. This scientist was awarded a Nobel Prize for his work but the prize didn't come until 15 years later. Name this Nobel Laureate.

The first person to identify the molecule and the Nobel Laureate wins a free lunch at the Faculty Club. Previous winners are ineligible for one month from the time they first won the prize.

There are eight ineligible candidates for this week's reward: Ramon, address unknown, Jason Oakley of the University of Toronto, John Bothwell from the Marine Biological Association of the UK, in Plymouth (UK), Wesley Butt of the University of Toronto, David Schuller of Cornell University, Nova Syed of the University of Toronto, Dima Klenchin of the University of Wisconsin and undergraduate Alex Ling of the University of Toronto

John, David, and Dima have offered to donate their free lunch to a deserving undergraduate so I'm going to continue to award an additional free lunch to the first undergraduate student who can accept a free lunch. Please indicate in your email message whether you are an undergraduate and whether you came make it for your free lunch (with a friend).

THEME:

Nobel Laureates
Send your guess to Sandwalk (sandwalk (at) bioinfo.med.utoronto.ca) and I'll pick the first email message that correctly identifies the molecule and names the Nobel Laureate(s). Note that I'm not going to repeat Nobel Laureate(s) so you might want to check the list of previous Sandwalk postings by clicking on the link in the theme box.

Correct responses will be posted tomorrow. I reserve the right to select multiple winners if several people get it right.

Comments will be blocked for 24 hours. Comments are now open.


No comments:

Post a Comment