I'm not going to review this book, instead, I'm going to comment on just two things that interest me: how Jerry Coyne treats the mechanisms of evolution (natural selection and random genetic drift); and how he treats speciation—his area of expertise. I'll also discuss Richard Dawkins' treatment of these two topic in his book. (That's four separate postings.)
The first chapter in Why Evolution Is True is "What Is Evolution?" This is an appropriate way to begin and Jerry Coyne starts off nicely by saying that "Darwinism" is the theory of evolution by natural selection. He then proceeds to describe the main tenets of the modern theory of evolution, taking the time to point out that, "the mechanism of most (but not all) of evolutionary change is natural selection."
The sixth tenet of modern evolutionary theory is, "processes other than natural selection can cause evolutionary change." He's talking about random genetic drift although, like most adaptationists, he feels compelled to add a qualifier.
The influence of this process on important evolutionary change, though, is probably minor, because it does not have the moulding power of natural selection. Natural selection remains the only process that can produce adaptation. Nevertheless, we'll see in chapter 5 that genetic drift may play some evolutionary role in small populations and probably accounts for some non-adaptive features of DNA.Okay, so it's not perfect, but at least he isn't confused about the difference between "evolutionary theory" and "Darwinism". Right?
Wrong. Before the chapter is finished he's talking about the six tenets of "Darwinism" and freely using "Darwinism" and "evolutionary theory" as symptoms. [See Jerry Coyne on Darwinism]
I don't get it. If Darwinism is evolution by natural selection and modern evolutionary theory includes the idea that not all evolution is caused by natural selection, then how can Darwinism be used as a synonym for evolutionary theory? I checked the index for "Darwinism" to see if there was a discussion about this elsewhere in the book. It wasn't much help since the index entry was: "Darwinism, see evolution."
Jerry Coyne is an adaptationist in the sense that he focuses most of his attention on natural selection and gives other mechanisms of evolution short shrift. This does not mean that he ignores them completely as I just showed. He knows about random genetic drift and he described it accurately (see below). The problem is that he tends to forget his lessons when his mind isn't focused on the differences between evolution and natural selection, and Darwinism vs random genetic drift.
In spite of the title of chapter 1, it doesn't really explain what evolution is. It concentrates more on describing evolutionary theory than on actually defining evolution. However, when we get to chapter 5 we to find an adequate definition of evolution. Jerry Coyne says, "Most biologists define evolution as a change in the porportion of alleles (different forms of a gene) in a population."
He then describes how the frequencies of alleles can change in a population by random stochastic means. Using ABO blood types as an example, he describes the typical behavior of alleles in a population of sexually producing organisms. He then says, ...
Such random change in the frequency of genes over time is called genetic drift. It is a legitimate type of evolution, since it involves changes in the frequencies of alleles over time, but it doesn't arise from natural selection. One example of evolution by drift may be the unusual frequencies of blood types (as in the ABO system) in the Old Order Amish and Dunker religious communities in America. These are small, isolated, religious groups whose members intermarry—just the right circumstances for rapid evolution by genetic drift.1This sounds like a typical adaptationist speaking. As a general rule, adaptationists admit to random genetic drift but confine it to small populations. They also make sure you understand that drift can't cause adaptation. Finally they state their opinion that drift only affects neutral alleles.
Accidents of sampling can also happen when a population is founded by just a few immigrants, as occurs when individuals colonize an island or a new area. The almost complete absence of genes producing the B blood type in Native American populations, for example, may reflect the loss of this gene in a small population of humans that colonized North America from Asia around twelve thousand years ago.2
Both drift and natural selection produce genetic change that we recognize as evolution. But there's an important difference. Drift is a random process, while selection is the anti-thesis of randomness. Genetic drift can change the frequencies of alleles regardless of how useful they are to their carrier. Selection, on the other hand, always gets part of harmful alleles and raises the frequencies of beneficial ones.
As a purely random process, genetic drift can't cause the evolution of adaptations. It could never build a wing or an eye. That takes nonrandom natural selection. What drift can do is cause the evolution of features that are neither useful nor harmful to the organism.
This is exactly the sort of thing Gould and Lewontin were complaining about in the "Spandrels" paper of 1978.
At this point, some evolutionists will protest that we are caricaturing their view of adaptation. After all, do they not admit genetic drift, allometry, and a variety of reasons for non-adaptive evolution? They do, to be sure, but we make a different point. In natural history, all possible things happen sometimes; you generally do not support your favorite phenomenon by declaring rivals impossible in theory. Rather, you acknowledge the rival, but circumscribe its domain of action so narrowly that it cannot have any importance in the affairs of nature. Then you often congratulate yourself for being such an undogmatic and ecumenical chap. We maintain that alternatives to selection for best overall design have generally been relegated to unimportance by this mode of argument.This describes the views of many adaptationists but Jerry Coyne does not exactly fall into that mode of thinking—at least not when his attention is focused on the issue.
In fact, genetic drift is not only powerless to create adaptation, but can actually overpower natural selection. Especially in small populations, the sampling effect can be so large that it raises the frequency of harmful genes even though selection is working in the opposite direction. This is almost certainly why we see a high incidence of genetically based diseases in isolated human communities, including Gaucher's disease in northern Swedes, Tay-Sachs in the Cajuns of Louisiana, and in retinitis pigmentosa in the inhabitants in the inhabitants of the island of Tristan da Cunha.This is very important and Jerry Coyne is one of the few adaptationists who get it. Random genetic drift doesn't just work on neutral alleles. It can also lead to high levels of deleterious alleles. Even their eventual fixation.
It would have been great if he had pointed out that random genetic drift can also lead to the loss of beneficial alleles making natural selection a stochastic process.
Because certain variations in DNA or protein sequence may be, as Darwin puts it "neither useful nor injurious" (or "neutral" as we now call them), such variants are especially liable to evolution by drift. For example, some mutations in a gene don't affect the sequence of the protein that it produces, and so don't change the fitness of its carrier. The same goes for mutations in non-functioning pseudogenes—old wrecks of genes still kicking around in the genome. Any mutations in these genes have no effect on the organism, and therefore can evolve only by genetic drift.It's impressive that Coyne admits to the possibility that externally visible features could be neutral and could evolve by random genetic drift. However, he immediately qualifies the statement by pointing out that it's very difficult to prove whether a trait has absolutely no selective advantage. This is true, but adaptationists usually forget to mention two things about natural selection that weaken this argument. First, they forget to mention that it's often just as difficult to prove that a trait has a selective advantage. Second, traits with small advantages are most often lost before they are fixed. Natural selection is not random but neither is it as much of a sure thing as most people believe.
Many aspects of molecular evolution, then, such as certain changes in DNA sequence, may reflect drift rather than selection. It's also possible that many externally visible features of organisms could evolve via drift, especially if they don't affect reproduction. The diverse shapes of leaves of different tree species—like the differences between oaks and maple trees -- were once suggested to be "neutral" traits that evolved by genetic drift. But it's hard to prove that a trait has absolutely no selective advantage. Even a tiny advantage, so small as to be unmeasurable or unobservable by biologists in real time, can lead to important evolutionary changes over eons.
The relative importance of genetic drift versus selection in evolution remains a topic of hot debate among biologists.
To my way of thinking, Jerry Coyne clearly falls into the adaptationist camp. But on the continuum from pluralist to adaptationist he lies somewhere close to the middle, albeit still on the adaptationist side.
The fact that he's close to the middle is among the reasons why I think this book is so good.
Hear Coyne talk about his book: Phrasing a Coyne: Jerry Coyne on Why Evolution Is True.
1. This is technically correct. Individual alleles will be fixed much faster in small populations than in large populations ... if they are fixed. But this does not mean that random genetic drift only fixes genes in small populations.
2. The founder effect is an important feature of evolution by accident.
No comments:
Post a Comment