Let's set the stage by quoting from the article by William Martin.
Thus, it seems to me that there is a schisma abrew in cell evolution, with the rRNA tree and proponents of its infallibility on the one side and other forms of evidence, proponents of LGT, or proponents of a symbiotic origin of eukaryotes on the other. The former camp is well organized behind a unified view (be it right or wrong, still a view) and is arguing that we already have the answers to microbial evolution. The latter camp is not organized into castes of recognized leadership and followers, meaning that (if we are lucky) concepts and their merits, not position or power, will determine the outcome of the battle as to what ideas might or might not be worthwhile entertaining as a working hypothesis for the purpose of further scientific endeavour.The article by Norman Pace represents the side that already has the answers. He is a strong proponent of the Three Domain Hypothesis. These days, the main thrust of his argument is that we should all jump on the bandwagon or risk being left behind. I heard him speak in San Francisco last April and he sounded more like a preacher than a scientist. His article in Nature, ”Time for a Change”, is an example of the way the Three Domain Hypothesis proponents have been arguing for 20 years.
One of the key problems in deep phylogeny is choosing the right gene. Pace argues in favor of ribosomal RNA—not a surprise since he has invested over 20 years in this molecule. Ideally, what kind of gene do we want to examine in order to determine the deepest branches in the tree of life? According to Pace there are three criteria ....
1. The gene must be universal.Only ribosomal RNA meets all three criteria, says Pace.
2. The gene must have resisted lateral gene transfer.
3. The gene must be large enough to provide useful phylogenetic information.
There’s no question about #1. Ribosomal RNA genes are fond in all species. There are very few other genes that meet this criterion. Almost all other candidates are absent in at least a few species. Ribosomal RNA satisfies #3 as well. Even the small subunit is large enough.
What about #2? Which genes have “resisted” lateral gene transfer? You can’t just declare by fiat that ribosomal RNA genes haven’t been transferred. It’s a debatable question as we’ll see later on.
I would add three other criteria.
4. The gene must be unique, or if it isn’t, paralogues must be easily recognized.Ribosomal RNA doesn’t do so well when we add these criteria. Most bacterial genomes have multiple copies of ribosomal RNA genes. They are usually 99% similar but there are known examples of more divergent paralogues. This is not likely to be a serious problem for deep phylogeny, but it has caused problems at the species level.
5. The gene must encode a protein because it’s much more accurate to analyze amino acid sequences than nucleic acid sequences. (And easier to align.)
6. The gene must be highly conserved in order to retain significant sequence similarity at the deepest levels.
Ribosomal RNA does not encode protein. That’s a serious problem that Pace never addresses.
Ribosomal RNA genes are well conserved but not as highly conserved as some others. This is why rRNA can be used to distinguish closely related species whereas the sequences of other genes are identical unless the species diverged more than 10-20 million years ago. Part of the problem with using rRNA sequences in deep phylogeny is that they are too divergent.
Having declared that ribosomal RNA genes are the best choice, Pace then goes on to show us the “true”universal tree of life. As you can see, it is divided into three distinct clusters separated by long branches. The clades represent Bacteria, Archaea, and Eukaryotes; the Three Domains. The prokarotes (Bacteria and Archaea) seem to associate and the eukaryotes seem to be more distantly related.
But first impressions can be misleading. Pace puts the root on the branch leading to bacteria and not on the long branch leading to Eukaryotes. This root is based entirely on two old 1989 papers, which he references. Both of these papers have been refuted, but that’s not something you would learn from reading Pace’s article. (There are other, more recent, experiments that root the tree on the bacterial branch and these should have been used. The fact that they weren’t reflects Pace’s degree of critical thinking on this problem. )
To many of us, the large scale structure of the tree of life just doesn’t look right. The long branches leading from the trifurcation point to Bacteria and Eukaryotes smack of artifact. The branching within each of the domains looks too simple. It’s part of the reason why there’s skepticism about the rRNA tree, as we’ll see.
The rest of the article is a passionate defense of the importance of bacteria. I agree with him, for the most part, and so do lots of evolutionary biologists. Bacteria are much more important than eukaryotes! :-)
Pace contributes very little to the debate since he is not willing to entertain any doubts about the Three Domain Hypothesis. For that we have to look at some other papers.
Microbobial Phylogeny and Evolution: Concepts and Controversies Jan Sapp, ed., Oxford University Press, Oxford UK (2005)
Jan Sapp The Bacterium’s Place in Nature
Norman Pace The Large-Scale Structure of the Tree of Life.
Woflgang Ludwig and Karl-Heinz Schleifer The Molecular Phylogeny of Bacteria Based on Conserved Genes.
Carl Woese Evolving Biological Organization.
W. Ford Doolittle If the Tree of Life Fell, Would it Make a Sound?.
William Martin Woe Is the Tree of Life.
Radhey Gupta Molecular Sequences and the Early History of Life.
C. G. Kurland Paradigm Lost.
No comments:
Post a Comment