
RNA (and DNA) can only be synthesized from the 5′ to the 3′ direction. What this means is that at the beginning of the gene when the transcription bubble forms it's the template strand that's copied into RNA and the beginning of the template strand is the 3′ end. (It's the opposite orientation of the newly synthesized RNA.) [see Transcription]
The complementary strand of DNA is called the coding strand because it represents the sequence of the gene product. In other words, it's the same sequence as the RNA. By convention the orientation of the gene is determined by the coding strand and not the template strand. Thus, the beginning of a gene is called the 5′ end and the end of a gene is the 3′ end;.
The electron micrograph below shows E. coli ribosomal RNA genes being transcribed. The thin line (upper right) is the Double-stranded DNA strand. Transcription of the genes begins at the initiation site (lower left). This is the 5′ end of the genes.

The large ribosomal RNA is in the second half of the transcribed region. You can see that the RNA in the second half is larger than the small ribosomal RNA in the first half.
Note that there are many transcription complexes transcribing this region at the same time. In fact, they are about as closely packed as they can possibly be. These genes are being transcribed at the maximum possible rate. They have a very strong promoter.
No comments:
Post a Comment