Monday, March 19, 2007

Gene and Transcription Orientation

 
The DNA double helix consists of two strands of DNA wound around each other to form the classic helical structure. One of the most important insights into solving the structure was when Watson and Crick realized that the two strands had to run in opposite direction. The ends of each strand are identified by the carbon atom on the deoxyribose sugar. One end is called the 5′ (five prime) end because the 5′ carbon atom is exposed. The other end is called the 3′ (three prime) end because the 3′ carbon atom is exposed.

RNA (and DNA) can only be synthesized from the 5′ to the 3′ direction. What this means is that at the beginning of the gene when the transcription bubble forms it's the template strand that's copied into RNA and the beginning of the template strand is the 3′ end. (It's the opposite orientation of the newly synthesized RNA.) [see Transcription]

The complementary strand of DNA is called the coding strand because it represents the sequence of the gene product. In other words, it's the same sequence as the RNA. By convention the orientation of the gene is determined by the coding strand and not the template strand. Thus, the beginning of a gene is called the 5′ end and the end of a gene is the 3′ end;.

The electron micrograph below shows E. coli ribosomal RNA genes being transcribed. The thin line (upper right) is the Double-stranded DNA strand. Transcription of the genes begins at the initiation site (lower left). This is the 5′ end of the genes.

RNA polymerase first bound to the initiation site and began transcribing in the 5′ to 3′ direction as shown. As the transcription complex moves along the gene the RNA product gets longer. In this case it is bound to protein so it looks compact. About halfway along the genes the RNA is processed by cutting and that's why it seems to get shorter near the middle of the gene.

The large ribosomal RNA is in the second half of the transcribed region. You can see that the RNA in the second half is larger than the small ribosomal RNA in the first half.

Note that there are many transcription complexes transcribing this region at the same time. In fact, they are about as closely packed as they can possibly be. These genes are being transcribed at the maximum possible rate. They have a very strong promoter.

No comments:

Post a Comment