Monday, May 26, 2008

Centromere DNA

 
During mitosis in eukaryotic cells the chromosomes are duplicated and the two sister chromosomes separate and move to opposite ends of the dividing cell. This segregation is controlled by spindle microtubules that attach to specific regions of the chromsomes called centromeres.

Centromeres are easily seen in the light microscope following chromosome condensation. They appear as a constricted region where the daughter chromosomes remain attached to each other. In non-dividing cells the centromere region is heterochromatic, which means that it remains relatively condensed compared to the rest of the chromatin that contains active genes (euchromatin).

Yeast centromeres are very simple but mammalian centromere DNA has not been extensively characterized because it consists largely of multiple repeats of simple sequence DNA. Because of the repetitive nature of centromeric DNA these region are difficult to clone. They are missing from the human genome database.

THEME

Genomes & Junk DNA

Total Junk so far

    54%
Nevertheless, we have a pretty good idea of the organization of centromere DNA from the few centromeres that have been sequenced. In humans the dominant repeat is α satellite DNA, a 171 bp sequence that is repeated about 18,000 times at an average centromere. Kinetochore proteins bind to the central region of the centrosome and the spindle microtubules attach to the kinetochore (Cheeseman and Desai, 2008).

Fluorescent hybridization studies with α satellite DNA light up all centromeres on human chromosome indicating an abundance of α satellite DNA at all centromeres. We don't know how much of this DNA is essential for chromosome segregation. There are rare examples of neocentromeres (newly formed centromeres) that have very little α satellite DNA suggesting that much of it is non-essential. Artificial human chromosomes segregate at mitosis with only a few copies of α satellite DNA at their centromeres.

Not all α satellite DNA is associated with functional centromeres since the presence of inactive, nonfunctional centromere sequences in the human genome is well known. (Such as one of the ancestral centromeres associated with the formation of human chromosome 2 from a fusion of two separate primate chromosomes. See Stanyon et al. (2008) for a review of the evolution of primate chromosomes with an emphasis on the formation of new centromeres and the loss of ancient ones.)

There are also at least 68,214 monomeric α satellite sequences in the human genome (Alkan et al. 2007).

Human centromeres range from 0.3Mb to 5Mb in size (Cleveland et al. 2003). If the average centromeric region is 3Mb (3,000 kb) in size then 23 centromeres represents 2% of the entire genome sequence. Not all of this DNA is essential because, among other reasons, there is considerable variation between individuals in the length of a given centromere. Nevertheless, lets assume for the sake of our junk DNA calculation that all of it is essential.

Monomeric α satellite sequences make up about 0.3% of the genome (Alkan et al. 2007). These bits of DNA are almost certainly non-essential "escapees" from centromeric regions or fossil centromeres. The total amount of α satellite DNA in the human genome is between 2% and 5%. The vast majority of these sequences are not in the databases. If we add in the fossil centromeres we can estimate that the total amount of junk α satellite DNA comes to about 1% of the genome.


[Image Credits: The drawing of a centromere is from Alberts et al. (2002) Figure 4-50. The photograph of chromosomes is from Hunt Willard (Schueler et al. (2001)]

Alberts, B., Johnson, A., Lewis, J., Raff, M., Roberts, K. and Walter, P. (2002) The Molecular Biology of the Cell 4th ed., Garland Science, New York (USA)

Alkan, C., Ventura, M., Archidiacono, N., Rocchi, M., Sahinalp, S.C., et al. (2007) Organization and Evolution of Primate Centromeric DNA from Whole-Genome Shotgun Sequence Data. PLoS Comput Biol 3: e181. [doi:10.1371/journal.pcbi.0030181]

Cheeseman, I.M. and Desai, A. (2008) Molecular architecture of the kinetochore–microtubule interface. Nature Reviews Molecular Cell Biology 9:33-46. [doi:10.1038/nrm2310]

Cleveland, D.W., Mao, Y., and Sullivan, K.S. (2003) Centromeres and Kinetochores From Epigenetics to Mitotic Checkpoint Signaling. Cell 112:407-421. [doi:10.1016/S0092-8674(03)00115-6 ]

Schueler, M.G., Higgins, A.W., Rudd, M.K., Gustashaw, K. & Willard, H.F. (2001) Genomic and genetic definition of a functional human centromere. Science 294:109-115.

Stanyon, R., Rocchi, M., Capozzi, O., Roberto, R., Misceo, D., Ventura, M., Cardone, M.F., Bigoni, F., and Archidiacono, N. (2008) Primate chromosome evolution: Ancestral karyotypes, marker order and neocentromeres. Chromosome Research 16:17-39. [doi: 10:1007/s10577-007-1209-z]

No comments:

Post a Comment