Monday, February 12, 2007

Junk DNA: Scientific American Gets It Wrong (again)

In "Ask the Experts" somebody asked What is junk DNA, and what is it worth?. The question was answered by "expert" Wojciech Makalowski of Pennsylvania State University. Here's the answer ...
In 1972 the late geneticist Susumu Ohno coined the term "junk DNA" to describe all noncoding sections of a genome, most of which consist of repeated segments scattered randomly throughout the genome.
This is very misleading. First, nobody today would argue that all noncoding DNA is junk and I very much doubt that Ohno made that argument in 1972 (the orignal paper is hard to get). We know tons of examples of noncoding DNA that isn't junk.

Second, the focus on repetitive DNA is inappropriate. Lots of junk DNA is non-repetitive; pseudogenes are a prime example. Makalowski has a particular bee in his bonnet over repetitive DNA but that shouldn't be allowed to warp his judgement when responding to a question in Scientific American.
Although very catchy, the term "junk DNA" repelled mainstream researchers from studying noncoding genetic material for many years. After all, who would like to dig through genomic garbage?
Nonsense. Researchers have been exploring noncoding DNA intensely for the past 40 years. That's why we know so much about regulatory sequences. Regulatory sequences are noncoding DNA that control gene expression.

Furthermore, even when it comes to true junk DNA, properly defined, hundreds of papers have been published. Lots of us have been very interested in junk DNA—at least in part in order to find out whether it has a function. This work led to the indentification of hundreds of pseudogenes, the unimportance of most intron sequences, and the degeneracy of LINES and SINES. There's lots more. I don't know of any researchers that were "repelled" from studying junk DNA. Many took it as a challenge.
Thankfully, though, there are some clochards who, at the risk of being ridiculed, explore unpopular territories. And it is because of them that in the early 1990s, the view of junk DNA, especially repetitive elements, began to change. In fact, more and more biologists now regard repetitive elements as genomic treasures. It appears that these transposable elements are not useless DNA. Instead, they interact with the surrounding genomic environment and increase the ability of the organism to evolve by serving as hot spots for genetic recombination and by providing new and important signals for regulating gene expression.
Serving as hotspots for genetic recombination is not a "function" of most junk DNA. Furthermore, it's not at all clear that increasing recombination at a particular site will have any effect on future survival. Finally, signals for regulating gene expression have been known for decades. These signals are not junk DNA.
Genomes are dynamic entities: new functional elements appear and old ones become extinct. And so, junk DNA can evolve into functional DNA. The late evolutionary biologist Stephen Jay Gould and paleontologist Elisabeth Vrba, now at Yale University, employed the term "exaptation" to explain how different genomic entities may take on new roles regardless of their original function—even if they originally served no purpose at all. With the wealth of genomic sequence information at our disposal, we are slowly uncovering the importance of non-protein-coding DNA.
The occasional piece of junk DNA may be co-opted to become part of a newly evolved function. This does not mean that all junk DNA has a function. That's a classic error in logic more common in freshmen undegraduates than in "expert" Professors.
... These and countless other examples demonstrate that repetitive elements are hardly "junk" but rather are important, integral components of eukaryotic genomes. Risking the personification of biological processes, we can say that evolution is too wise to waste this valuable information.
From time to time we will find examples of some little bit of junk DNA that acquires a function. This does not mean that all junk DNA has a function. And it certainly doesn't mean that all DNA has now been shown to be "important, integral components of eukaryotic genomes." Most of our DNA is still junk. It turns out that evolution really isn't so smart after all.

No comments:

Post a Comment